Improved analysis of GW150914 using a fully spin-precessing waveform model

Abbott, B. P. and Jawahar, S. and Lockerbie, N. A. and Tokmakov, K. V., LIGO Scientific Collaboration, Virgo Collaboration (2016) Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X, 6 (4). 041014. ISSN 2160-3308 (https://doi.org/10.1103/PhysRevX.6.041014)

[thumbnail of Abbott-etal-PRX-2016-Improved-analysis-of-GW150914-using-a-fully-spin-precessing-waveform-model]
Preview
Text. Filename: Abbott_etal_PRX_2016_Improved_analysis_of_GW150914_using_a_fully_spin_precessing_waveform_model.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (1MB)| Preview

Abstract

This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett.  116 , 061102 (2016).]. Abbott et al. [Phys. Rev. Lett.  116 , 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett.  116 , 241102 (2016).], and we quote updated component masses of 35+5−3 M⊙ and 30+3−4 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett.  116 , 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.