Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings

Theotokatos, Gerasimos and Guan, Cong and Chen, Hui and Lazakis, Iraklis (2018) Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings. Energy : The International Journal, 143. pp. 533-545. ISSN 1873-6785

[img] Text (Theotokatos-etal-Energy-2017-Development-of-an-extended-mean-value-engine)
Theotokatos_etal_Energy_2017_Development_of_an_extended_mean_value_engine.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 2 November 2018.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (3MB) | Request a copy from the Strathclyde author

Abstract

This study focuses on the development of an extended MVEM capable of predicting the engine performance parameters (thermodynamic, flow and mechanical) of two-stroke marine engines at varying settings of injection timing and turbine area. The extension employed mapping of a number of the engine parameters carried out based on a zero-dimensional model. Both the zero-dimensional and the mean value engine models were developed in MATLAB/Simulink environment following the same modular approach and their accuracy was validated against experimental data from shop trials. Subsequently, the zero-dimensional model was used for engine parametric simulation by changing the start of fuel injection and the turbocharger turbine area. By analyzing the derived results, the relationships between the investigated engine parameters were established and the appropriate corrections were applied in the MVEM. The extended MVEM was benchmarked against the zero-dimensional model and MVEM at steady and transient conditions and the derived results were analysed and discussed revealing the advantages and limitations of the investigated modelling approaches. Based on the obtained results, the proposed extension methodology improves the MVEM prediction capability without considerably increasing the complexity and the execution time and therefore, it can be employed for the engine performance prediction in control system design investigations overcoming limitations of the MVEM