Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Time-lapse measurement of single-cell response to nanomaterial : a microfluidic approach

Cunha-Matos, C. A. and Millington, O. M. and Wark, A. W. and Zagnoni, M. (2016) Time-lapse measurement of single-cell response to nanomaterial : a microfluidic approach. In: 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2016). Chemical and Biological Microsystems Society, San Diego, CA, pp. 377-378. ISBN 9781510834163

Text (Cunha-Matos-etal-MicroTAS2016-Time-lapse-measurement-of-single-cell-response-to-nanomaterial)
Cunha_Matos_etal_MicroTAS2016_Time_lapse_measurement_of_single_cell_response_to_nanomaterial.pdf - Accepted Author Manuscript

Download (260kB) | Preview


This work presents the successful application of a single-cell microfluidic platform for high-throughput, real-time screening of nanoparticle-cell interactions. Taking vaccine delivery as a proof-of-concept application, ovalbumin-conjugated gold nanorods were produced and controllably delivered to primary dendritic cells within the device. Time-lapse imaging enabled monitoring of hundreds of single-cells during exposure to a range of concentrations of nanoparticle conjugates and simultaneous quantification of specific cellular functions. This integrated system provides throughput and statistical data comparable to that obtained with flow cytometry but also offers a novel approach to determine the dynamics of nanoparticle-cell interactions and nanoparticle-mediated antigen delivery with single-cell resolution.