Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae

Kamal, Nurkhalida and Viegelmann, Christina V. and Clements, Carol J. and Edrada-Ebel, RuAngelie (2016) Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae. Planta Medica. ISSN 0032-0943

[img]
Preview
Text (Kamal-etal-PM-2016-Metabolomics-guided-isolation-of-anti-trypanosomal-metabolites)
Kamal_etal_PM_2016_Metabolomics_guided_isolation_of_anti_trypanosomal_metabolites.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

Fungal endophytes offer diverse and unique secondary metabolites, making these organisms potential sources of promising drug leads. The application of high-resolution-liquid chromatography mass spectrometry and nuclear magnetic resonance-based metabolomics to fungal endophytes is practical in terms of dereplication studies and the mining of bioactive compounds. In this paper, we report the application of metabolomics in parallel with anti-trypanosomal assays to determine the ideal conditions for the medium-scale fermentation of the endophyte Lasiodiplodia theobromae. The (1)H NMR comparison between the active versus inactive fractions identified several unique chemical fingerprints belonging to the active fractions. Furthermore, by integrating high-resolution-liquid chromatography mass spectrometry data with multivariate data analysis, such as orthogonal partial least squares-discriminant analysis (OPLS-DA) and the bioactivity results of the fractions of L. theobromae, the anti-trypanosomal agents were easily discerned. With available databases such as Antibase and Dictionary of Natural Products coupled to MZmine through in-house algorithms optimized in our laboratory, the predicted metabolites were readily identified prior to isolation. Fractionation was performed on the active fractions and three known compounds were isolated, namely, cladospirone B, desmethyl-lasiodiplodin, and R-(-)-mellein. Cladospirone B and desmethyl-lasiodiplodin were among the predicted compounds generated by the OPLS-DA S-plot, and these compounds exhibited good activity against Trypanosoma brucei brucei with minimum inhibitory concentrations of 17.8 µM and 22.5 µM, respectively.