Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin films

Vilalta-Clemente, A. and Naresh-Kumar, G. and Nouf-Allehiani, M. and Gamarra, P. and di Forte-Poisson, M.A. and Trager-Cowan, C. and Wilkinson, A.J. (2017) Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin films. Acta Materialia, 125. pp. 125-135. ISSN 1359-6454

[img]
Preview
Text (Vilalta-Clemente-AM2017-Cross-correlation-based-high-resolution-electron-backscatter-diffraction)
Vilalta_Clemente_AM2017_Cross_correlation_based_high_resolution_electron_backscatter_diffraction.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (3MB) | Preview

Abstract

We describe the development of cross-correlation based high resolution electron backscatter diffraction (HR-EBSD) and electron channelling contrast imaging (ECCI), in the scanning electron microscope (SEM), to quantitatively map the strain variation and lattice rotation and determine the density and identify dislocations in nitride semiconductor thin films. These techniques can provide quantitative, rapid, non-destructive analysis of the structural properties of materials with a spatial resolution of order of tens of nanometers. HR-EBSD has a sensitivity to changes of strain and rotation of the order of 10−4 and 0.01° respectively, while ECCI can be used to image single dislocations up to a dislocation density of order 1010 cm−2. In the present work, we report the application of the cross-correlation based HR-EBSD approach to determine the tilt, twist, elastic strain and the distribution and type of threading dislocations in InAlN/AlN/GaN high electron mobility transistor (HEMT) structures grown on two different substrates, namely SiC and sapphire. We describe our procedure to estimate the distribution of geometrically necessary dislocations (GND) based on Nye-Kroner analysis and compare them with the direct imaging of threading dislocations (TDs) by ECCI. Combining data from HR-EBSD and ECCI observations allowed the densities of pure edge, mixed and pure screw threading dislocations to be fully separated.