Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor

Singh, A. K. and O'Donnell, K. P. and Edwards, P. R. and Lorenz, K. and Kappers, M. J. and Bokowski, M. (2017) Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor. Scientific Reports, 7. ISSN 2045-2322

[img]
Preview
Text (Singh-etal-SR2017-Hysteretic-photochromic-switching-of-Eu-Mg-defects-in-GaN)
Singh_etal_SR2017_Hysteretic_photochromic_switching_of_Eu_Mg_defects_in_GaN.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Although p-type activation of GaN by Mg underpins a mature commercial technology, the nature of the Mg acceptor in GaN is still controversial. Here, we use implanted Eu as a ‘spectator ion’ to probe the lattice location of Mg in doubly doped GaN(Mg):Eu. Photoluminescence spectroscopy of this material exemplifies hysteretic photochromic switching (HPS) between two configurations, Eu0 and Eu1(Mg), of the same Eu-Mg defect, with a hyperbolic time dependence on ‘switchdown’ from Eu0 to Eu1(Mg). The sample temperature and the incident light intensity at 355 nm tune the characteristic switching time over several orders of magnitude, from less than a second at 12.5 K, ~100 mW/cm2 to (an estimated) several hours at 50 K, 1 mW/cm2. Linking the distinct Eu-Mg defect configurations with the shallow transient and deep ground states of the Mg acceptor in the Lany-Zunger model, we determine the energy barrier between the states to be 27.7(4) meV, in good agreement with the predictions of theory. The experimental results further suggest that at low temperatures holes in deep ground states are localized on N atoms axially bonded to Mg acceptors.