Pulsed X-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

Rusby, D. R. and Brenner, C. M. and Armstrong, C. and Wilson, L. A. and Clarke, R. and Alejo, A. and Ahmed, H. and Butler, N. M. H. and Haddock, D. and Higginson, A. and McClymont, A. and Mirfayzi, S. R. and Murphy, C. and Notley, M. and Oliver, P. and Allott, R. and Hernandez-Gomez, C. and Kar, S. and McKenna, P. and Neely, D. (2016) Pulsed X-ray imaging of high-density objects using a ten picosecond high-intensity laser driver. Proceedings of SPIE, 9992. 99920E. ISSN 0277-786X (https://doi.org/10.1117/12.2241776)

[thumbnail of Rusby-etal-SPIE-2016-Pulsed-X-ray-imaging-of-high-density-objects-using-a-ten-picosecond-high-intensity-laser-driver]
Preview
Text. Filename: Rusby_etal_SPIE_2016_Pulsed_X_ray_imaging_of_high_density_objects_using_a_ten_picosecond_high_intensity_laser_driver.pdf
Accepted Author Manuscript

Download (888kB)| Preview

Abstract

Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of ~10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.