Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA

Torres-Nuñez, A. and Faulds, K. and Graham, D. and Alvarez-Puebla, R. A. and Guerrini, L. (2016) Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst, 141 (17). pp. 5170-5180. ISSN 0003-2654

[img]
Preview
Text (Torres-Nuñez-etal-2016-Silver-colloids-as-plasmonic-substrates-for-direct)
Torres_Nu_ez_etal_2016_Silver_colloids_as_plasmonic_substrates_for_direct.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Ultrasensitive direct SERS analysis offers a powerful analytical tool for the structural characterization and classification of nucleic acids. However, acquisition of reliable spectral fingerprints of such complex biomolecules poses important challenges. In recent years, many efforts have been devoted to overcome these limitations, mainly implementing silver colloids as plasmonic substrates. However, a reliable cross-comparison of results reported in the recent literature is extremely hard to achieve, mostly due to the broad set of different surface properties of the plasmonic nanoparticles. Herein, we perform a thorough investigation of the role played by the metal/liquid interface composition of silver colloids in the direct label-free SERS analysis of DNA. Target molecules of increasing complexity, from short homopolymeric strands to long genomic duplexes, were used as probes. We demonstrate how apparently subtle changes in the colloidal surface chemistry can dramatically modify the affinity and the final SERS spectral profile of DNA. This has significant implications for the future design of new analytical strategies for the detection of DNA using SERS without labels.