Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

An investigative study into the sensitivity of different partial discharge φ-q-n pattern resolution sizes on statistical neural network pattern classification

Mas'ud, Abdullahi Abubakar and Stewart, Brian G. and McMeekin, Scott G (2016) An investigative study into the sensitivity of different partial discharge φ-q-n pattern resolution sizes on statistical neural network pattern classification. Measurement, 92. pp. 497-507. ISSN 0263-2241

[img]
Preview
Text (Mas'ud-etal-MJIMC-2016-An-investigative-study-into-the-sensitivity-of-different-partial)
Mas_ud_etal_MJIMC_2016_An_investigative_study_into_the_sensitivity_of_different_partial.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

This paper investigates the sensitivity of statistical fingerprints to different phase resolution (PR) and amplitude bins (AB) sizes of partial discharge (PD) φ-q-n (phase-amplitude-number) patterns. In particular, this paper compares the capability of the ensemble neural network (ENN) and the single neural network (SNN) in recognizing and distinguishing different resolution sizes of φ-q-n discharge patterns. The training fingerprints for both the SNN and ENN comprise statistical fingerprints from different φ-q-n measurements. The result shows that there exists statistical distinction for different PR and AB sizes on some of the statistical fingerprints. Additionally, the ENN and SNN outputs change depending on training and testing with different PR and AB sizes. Furthermore, the ENN appears to be more sensitive in recognizing and discriminating the resolution changes when compared with the SNN. Finally, the results are assessed for practical implementation in the power industry and benefits to practitioners in the field are highlighted.