Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Acetylcholine released by endothelial cells facilitates flow-mediated dilatation

Wilson, Calum and Lee, Matthew D. and McCarron, John G. (2016) Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. Journal of Physiology, 594 (24). pp. 7267-7307. ISSN 0022-3751

[img]
Preview
Text (Wilson-etal-JP2016-Acetylcholine-released-by-endothelial-cells-facilitates-flow)
Wilson_etal_JP2016_Acetylcholine_released_by_endothelial_cells_facilitates_flow.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB) | Preview

Abstract

Circulating blood generates frictional forces (shear-stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow-mediated dilatation. Whilst some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing acetylcholine. Once liberated, acetylcholine acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow-activated release of acetylcholine from the endothelium is non-vesicular and occurs via organic cation transporters. Acetylcholine is generated following mitochondrial production of acetylCoA. Thus, we show acetylcholine is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction.