Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Improving the operational bandwidth of a 1-3 piezoelectric composite transducer using Sierpinski Gasket fractal geometry

Fang, Haoyu and Qiu, Zhen and O'Leary, Richard and Gachagan, Anthony and Mulholland, Anthony (2016) Improving the operational bandwidth of a 1-3 piezoelectric composite transducer using Sierpinski Gasket fractal geometry. In: Ultrasonics Symposium (IUS), 2016 IEEE International. IEEE.

[img]
Preview
Text (Fang-etal-IUS2016-Improving-the-operational-bandwidth-of-a-1-3-piezoelectric-composite)
Fang_etal_IUS2016_Improving_the_operational_bandwidth_of_a_1_3_piezoelectric_composite.pdf
Accepted Author Manuscript

Download (740kB) | Preview

Abstract

Wider operational bandwidth is an important requirement of an ultrasound transducer across many applications. It has been reported mathematically that by having elements with varying length scales in the piezoelectric transducer design, the device may possess a wider operational bandwidth or a higher sensitivity compared to a conventional device. In this paper, the potential for extending the operational bandwidth of a 1-3 piezoelectric composite transducer configured in a fractal geometry, known as the Sierpinski Gasket (SG), will be investigated using finite element analysis package PZFlex (Thornton Tomasetti). Two equivalent piezocomposite designs will be simulated: a conventional 1-3 piezocomposite structure and the novel SG fractal geometry arrangement. The transmit voltage response and open circuit voltage extracted from the simulations are used to illustrate the improved bandwidth predicted from the fractal composite design.