Plug-in repetitive control strategy for high-order wide output range impedance source converters
Wang, Yachao and Badawy, Ahmed and Holliday, Derrick and Williams, Barry W. (2016) Plug-in repetitive control strategy for high-order wide output range impedance source converters. IEEE Transactions on Power Electronics. ISSN 0885-8993 (https://doi.org/10.1109/TPEL.2016.2615689)
Preview |
Text.
Filename: Wang_etal_IEEETPE2016_Plug_in_repetitive_control_strategy_for_high_order_wide_output_range_impedance_source_converters.pdf
Accepted Author Manuscript Download (2MB)| Preview |
Abstract
High-order wide-output (HOWO) impedance source converters (ISCs) have been presented for ac inverter applications that require voltage step-up ability. With intrinsic passive impedance networks as energy sources, these converters are able to achieve voltage boosting with either polarity, leading to improved dc-link voltage utilization compared with the conventional two-level converter. However, HOWO-ISCs suffer from transfer functions giving low bandwidth, a penalty of increased passive devices and right-half-plane zeros, which result in lower order distortion of the ac output power. In this paper, a modified plug-in repetitive control scheme is presented for HOWO-ISCs with accurate reference tracking (hence low distortion), fast dynamic response, and enhanced robustness. By using zero-phase-shift finite impulse response filters in both the internal model of the repetitive controller and its compensation network, the proposed method achieves zero steady-state error and an extended closed-loop bandwidth. For HOWO-ISC cases, this method outperforms conventional proportional-integral (PI) control, which has considerable steady-state error. It also eliminates the need of parallel loops for several frequencies when proportional resonant control or orthogonal transformation based PI schemes are used to remove lower order distortion. The design process and performance analysis of the proposed repetitive control strategy are based on a novel three-phase HOWO-ISC configuration with a reduced number of switches. Simulation and experimental results confirm the feasibility and effectiveness of the proposed control approach.
ORCID iDs
Wang, Yachao ORCID: https://orcid.org/0000-0001-9058-2945, Badawy, Ahmed, Holliday, Derrick ORCID: https://orcid.org/0000-0002-6561-4535 and Williams, Barry W.;-
-
Item type: Article ID code: 58090 Dates: DateEvent6 October 2016Published6 October 2016Published Online26 September 2016AcceptedNotes: © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 07 Oct 2016 11:52 Last modified: 17 Dec 2024 01:15 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/58090