Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Ship machinery condition monitoring using vibration data through supervised learning

Gkerekos, Christos and Lazakis, Iraklis and Theotokatos, Gerasimos (2016) Ship machinery condition monitoring using vibration data through supervised learning. In: Proceedings of MSO 2016, International Conference on Maritime Safety and Operations. University of Strathclyde Publishing, pp. 103-110. ISBN 9781909522169

[img]
Preview
Text (Gkerekos-etal-MSO2016-Ship-machinery-condition-monitoring)
Gkerekos_etal_MSO2016_Ship_machinery_condition_monitoring.pdf
Accepted Author Manuscript

Download (541kB) | Preview

Abstract

This paper aims to present an integrated methodology for the monitoring of marine machinery using vibration data. Monitoring of machinery is a crucial aspect of maintenance optimisation that is required for the vessel operation to remain sustainable and profitable. The proposed methodology will train models using pre-classified (healthy/faulty) data and then classify new data points using the models developed. For this, vibration points are first acquired, appropriately processed and stored in a database. Specific features are then extracted from the data and stored. These data are then used to train supervised models pertinent to specific machinery components. Finally, new data are compared against the models developed in order to evaluate their condition. The above will provide a flexible but robust framework for the early detection of emerging machinery faults. This will lead to minimisation of ship downtime and increase of the ship’s operability and income through operational enhancement.