Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

A VSM (virtual synchronous machine) convertor control model suitable for RMS studies for resolving system operator/owner challenges

Roscoe, Andrew J and Yu, Mengran and Ierna, Richard and Zhu, Jiebei and Dyśko, Adam and Urdal, Helge and Booth, Campbell (2016) A VSM (virtual synchronous machine) convertor control model suitable for RMS studies for resolving system operator/owner challenges. In: 15th Wind Integration Workshop, 2016-11-15 - 2016-11-17.

[img]
Preview
Text (Roscoe-etal-WIW2016-virtual-synchronous-machine-convertor-control-model-suitable-for-RMS)
Roscoe_etal_WIW2016_virtual_synchronous_machine_convertor_control_model_suitable_for_RMS.pdf
Accepted Author Manuscript

Download (941kB) | Preview

Abstract

In recent years, it has become clear that reaching the targeted levels of renewable power generation poses problems, not only for basic infrastructure and generation/load balancing, but also in terms of fundamental network stability. In Ireland, the contribution from convertor-connected generation is already constrained to 50-55%, while recent studies of other networks suggest that any "penetration" of convertors above 65% could lead to instability. The phenomena have been observed both in RMS and high-fidelity EMT simulations of convertor-dominated power systems, and appears to be unavoidable when using the dq-axis current-source controllers within conventional grid-connected convertors. The high control bandwidth (>50 Hz) of these convertors also means that they cannot be effectively included within RMS type large-scale network models. The idea of "synthetic inertia" has been proposed in some publications as a mitigating solution but needs to be considered carefully, since if implemented incorrectly it has been shown to further destabilise the network at the critical small timescales and high frequencies. In this paper we present simple versions of a Virtual Synchronous Machine (VSM) model which is implemented and demonstrated in both transient and RMS based simulations. An important aspect of the VSM is that the controller’s bandwidth is low (<<50 Hz). This means that it can be modelled with reasonable accuracy in RMS simulation with time steps of the order of 2ms. From a system operator perspective, large-scale RMS simulations of entire countries or regions containing hundreds of VSM generators can be carried out with reasonable accuracy.