Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications

Roscoe, Andrew J. and Blair, Steven M. (2016) Choice and properties of adaptive and tunable digital boxcar (moving average) filters for power systems and other signal processing applications. In: IEEE Applied Measurements for Power Systems (AMPS 2016), 2016-09-28 - 2016-09-30, E.On Energy Research Center, RWTH Aachen University.

[img]
Preview
Text (Roscoe-Blair-AMPS2016-Choice-and-properties-of-adaptive-and-tunable-digital-boxcar-filters)
Roscoe_Blair_AMPS2016_Choice_and_properties_of_adaptive_and_tunable_digital_boxcar_filters.pdf
Accepted Author Manuscript

Download (525kB) | Preview

Abstract

The humble boxcar (or moving average) filter has many uses, perhaps the most well-known being the Dirichlet kernel inside a short-time discrete Fourier transform. A particularly useful feature of the boxcar filter is the ease of placement of (and tuning of) regular filter zeros, simply by defining (and varying) the time length of the boxcar window. This is of particular use within power system measurements to eliminate harmonics, inter-harmonics and image components from Fourier, Park and Clarke transforms, and other measurements related to power flow, power quality, protection, and converter control. However, implementation of the filter in real-time requires care, to minimise the execution time, provide the best frequency-domain response, know (exactly) the group delay, and avoid cumulative numerical precision errors over long periods. This paper reviews the basic properties of the boxcar filter, and explores different digital implementations, which have subtle differences in performance and computational intensity. It is shown that generally, an algorithm using trapezoidal integration and interpolation has the most desirable characteristics.