Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV absorbing material and SYTOX green labelling

McKenzie, Karen and MacLean, Michelle and Grant, M. Helen and Ramakrishnan, Praveen and MacGregor, Scott J. and Anderson, John G. (2016) The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV absorbing material and SYTOX green labelling. Microbiology, 162 (9). pp. 1680-1688. ISSN 1350-0872

Text (McKenzie-etal-Microbiology2016-Effects-of-405-nm-light-on-bacterial-membrane-integrity)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview


    Bacterial inactivation by 405nm light is accredited to the photo-excitation of intracellular porphyrin molecules which results in energy transfer and the generation of reactive oxygen species (ROS) which impart cellular oxidative damage. The specific mechanism of cellular damage, however, is not fully understood. Previous work has suggested that destruction of nucleic acids may be responsible for inactivation; however, microscopic imaging has suggested membrane damage as a major constituent of cellular inactivation. This study investigates the membrane integrity of Escherichia coli and Staphylococcus aureus exposed to 405nm light. Results indicated membrane damage to both species, with loss of salt and bile tolerance by S. aureus and E. coli, respectively, consistent with reduced membrane integrity. Increased nucleic acid release was also demonstrated in 405nm light-exposed cells, with up to 50% increase in DNA concentration into the extracellular media in the case of both organisms. SYTOX green fluorometric analysis however demonstrated contradictory results between the two test species. With E. coli, increasing permeation of SYTOX green was observed following increased exposure, with >500% increase in fluorescence, whereas no increase was observed with S. aureus. Overall, this study has provided good evidence that 405nm light exposure causes loss of bacterial membrane integrity in E. coli, but the results with S. aureus are more difficult to explain. Further work is required to gain greater understanding of the inactivation mechanism in different bacterial species, as there are likely to be other targets within the cell which are also impaired by the oxidative damage from photo-generated ROS.