Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Studies of ignition behaviour of biomass particles in a down-fire reactor for improving co-firing performance

Li, Jun and Paul, Manosh C. and Czajka, Krzysztof M. (2016) Studies of ignition behaviour of biomass particles in a down-fire reactor for improving co-firing performance. Energy and Fuels, 30 (7). pp. 5870-5877. ISSN 0887-0624

[img]
Preview
Text (Li-etal-EF-2016-Studies-of-ignition-behaviour-of-biomass-particles-in-a-down-fire)
Li_etal_EF_2016_Studies_of_ignition_behaviour_of_biomass_particles_in_a_down_fire.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

To realize large percentage biomass co-firing with coal in existing coal-fired boilers, the combustion behaviour of biomass is expected to be similar or comparable to that of coal. When co-firing with coal, biomass is not necessarily to be ground as fine as the dedicated coal particles due to its higher reactivity. With aim of achieving promising performance of co-firing with dedicated coal particles, the determination of suitable particle size of biomass becomes important. The paper investigates experimentally the ignition behaviour of three biomass materials in a down-fire reactor associated with thermogravimetric analyser (TGA). TGA results showed that the devolatilization process is accelerated by the presence of oxygen, but failed to identify the impacts of particle size on the ignition behaviour of biomass. However, the ignition testing results based in the down-fire reactor clearly showed that ignition delay time of a large biomass particle is longer than that of smaller one. In addition, being injected into the furnace, the softwood particles take a longer residence time to be ignited than the straw particles at same sizes, which agrees well with their reactivity analysis in TGA. Moreover, the ignition test results suggested that the ignition mechanism of biomass could be alternated from homogeneous to the heterogeneous ignition when the furnace temperature is increasing; at high enough furnace temperatures, the ignition predictably occurs at the particle surface without requiring the start of devolatilization. The results quantitatively demonstrate the effects of particle size on the ignition delay time of biomass , which, together with the transport phenomena and surrounding atmosphere, can contribute to control the biomass combustion profile and co-firing performance.