Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Transient analysis of interline dynamic voltage restorer using dynamic phasor representation

Abojlala, Khaled Issa and Holliday, Derrick and Xu, Lie (2016) Transient analysis of interline dynamic voltage restorer using dynamic phasor representation. In: The Seventeenth IEEE Workshop on Control and Modeling for Power Electronics, 2016-06-27 - 2016-06-30, Trondheim, Norway. (In Press)

[img]
Preview
Text (Abojlala-Holliday-Xu-IEEEWCMPE2016-transient-analysis-of-interline-dynamic-voltage-restorer)
Abojlala_Holliday_Xu_IEEEWCMPE2016_transient_analysis_of_interline_dynamic_voltage_restorer.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Computer planning and simulation of power systems require system components to be represented mathematically. A method for building a dynamic phasor model of an Interline Dynamic Voltage Restorer (IDVR) is presented, and the resulting model is tested in a simple radial distribution system. Mathematical analysis is carried out for each individual component of the IDVR as modular models, which are then aggregated to generate the final model. The proposed technique has the advantage of simplifying the modelling of any flexible AC transmission system (FACTS) device in dynamic phasor mode when compared to other modelling techniques reported in the literature. The IDVR, including the series injection transformer, is analysed in both ABC and DQ dynamic phasor modes, and IDVR power management is also presented. The ensure compatibility with transient stability programs, the analysis is performed for the fundamental frequency only, with other frequency components being truncated and without considering harmonics. Results produced by the IDVR dynamic phasor model are validated by comparison with results gained from a detailed MATLAB/Simulink IDVR model.