Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Risk and reliability assessment of future power systems

Bukhsh, W. A. and Bell, K. R. W. and Bedford, T. (2016) Risk and reliability assessment of future power systems. In: European Safety and Reliability Conference 2016, 2016-09-25 - 2016-09-29, University of Strathclyde. (In Press)

[img]
Preview
Text (Bukhsh-etal-ESREL-2016-Risk-and-reliability-assessment-of-future-power)
Bukhsh_etal_ESREL_2016_Risk_and_reliability_assessment_of_future_power.pdf
Accepted Author Manuscript
License: Unspecified

Download (691kB) | Preview

Abstract

Liberalisation of electricity markets, changing patterns in the generation and use of electricity, and new technologies are some of the factors that result in increased uncertainty about the future operating requirements of an electric power system. In this context, planning for future investments in a power system requires careful consideration of risk and reliability, and of the metrics with which these are measured. This paper highlights the need for consideration of a broader class of approaches to risk and reliability that have hitherto tended not to be an explicit part of the system development process in the electricity industry. We discuss a high level conceptual model that shows sources of uncertainty and modes of control for system operators and planners and offers a broad-brush approach to highlight risks at the planning stage. We argue that there is a need for new risk-informed criteria to help evaluate the necessary investments in electricity transmission systems. We further argue that the risk models that are developed for this purpose need to take better account of overall societal impact than is captured by traditional measures such as loss of load probability and loss of load expectation; societal impact should take account of frequencies of events with different levels of consequences, distinguishing, for example, between multiple small events and a single large event. This leads to discussion of a “disutility criterion” which has been previously studied in a health and safety context to distinguish between risk aversion and disaster aversion. This approach is new in the context of power systems.