Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy

Paterson, S. and Thompson, S. A. and Gracie, J. and Wark, A. W. and de la Rica, R. (2016) Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy. Chemical Science, 7 (9). pp. 6232-6237. ISSN 2041-6520

[img]
Preview
Text (Paterson-etal-CS-2016-self-assembly-of-gold-supraparticles-with-crystallographically-aligned)
Paterson_etal_CS_2016_self_assembly_of_gold_supraparticles_with_crystallographically_aligned.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (737kB)| Preview

    Abstract

    A new method is introduced for self-assembling citrate-capped gold nanoparticles into supraparticles with crystallographically aligned building blocks. It consists in confining gold nanoparticles inside a cellulos acetate membrane. The constituent nanoparticles are in close contact in the superstructure, and therefore generate hot spots leading to intense SERS signals. They also generate more plasmonic heat than the nanoparticle building blocks. The supraparticles are internalized by cells and show low cytotoxicity, but can kill cancer cells when irradiated with a laser. This, along with the improved plasmonic properties arising from their assembly, makes the gold supraparticles promising materials for applications in bioimaging and nanomedicine.