Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods
Conroy, M. and Li, H. and Kusch, G. and Zhao, C. and Ooi, B. and Edwards, P. R. and Martin, R. W. and Holmes, J. D. and Parbrook, P. J. (2016) Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods. Nanoscale, 8 (21). pp. 11019-11026. ISSN 2040-3372 (https://doi.org/10.1039/c6nr00116e)
Preview |
Text.
Filename: Conroy_etal_Nanoscale2016_Site_controlled_red_yellow_green_light_emitting_InGaN_quantum_discs.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD’s confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
ORCID iDs
Conroy, M., Li, H., Kusch, G. ORCID: https://orcid.org/0000-0003-2743-1022, Zhao, C., Ooi, B., Edwards, P. R. ORCID: https://orcid.org/0000-0001-7671-7698, Martin, R. W. ORCID: https://orcid.org/0000-0002-6119-764X, Holmes, J. D. and Parbrook, P. J.;-
-
Item type: Article ID code: 56549 Dates: DateEvent26 May 2016Published10 March 2016Published Online9 March 2016AcceptedSubjects: Science > Physics > Solid state physics. Nanoscience Department: Faculty of Science > Physics
Technology and Innovation Centre > Bionanotechnology
Technology and Innovation Centre > PhotonicsDepositing user: Pure Administrator Date deposited: 27 May 2016 11:04 Last modified: 06 Oct 2024 00:28 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/56549