Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Single-stage ac–dc buck–boost converter for medium-voltage high-power applications

Abdelsalam, Ibrahim and Adam, Grain Philip and Holliday, Derrick and Williams, Barry W. (2016) Single-stage ac–dc buck–boost converter for medium-voltage high-power applications. IET Renewable Power Generation, 10 (2). pp. 184-193. ISSN 1752-1416

[img]
Preview
Text (Abdelsalam-etal-IET-RPG-2016-Single-stage-ac–dc-buck–boost-converter-for-medium-voltage)
Abdelsalam_etal_IET_RPG_2016_Single_stage_ac_dc_buck_boost_converter_for_medium_voltage.pdf
Accepted Author Manuscript

Download (1MB)| Preview

    Abstract

    This study proposes three topologies based on single-stage three-phase ac-dc buck-boost converters suitable for medium-voltage high-power applications. The first two topologies are based on a dual three-phase buck-boost converter, with a three-winding phase-shifted transformer to achieve sinusoidal input currents, with relatively small ac filters. The limitation of these two topologies is the switching devices are exposed either to a high voltage beyond that tolerable by a single device. The third topology is based on three single-phase buck-boost converters; with their dc output terminals connected in series to generate high voltage. By using this approach, voltage stresses on the switching devices are greatly reduced, and sinusoidal input currents with nearly unity power factor is achieved over the entire operating range when using small ac filters. Analysis, PSCAD/EMTDC simulations and experimentation are used to assess the feasibility of the proposed topologies during normal operation. Major findings of this study are discussed and summarised as a comparison between the three topologies.