Analysis of photothermal release of Oligonucleotides from hollow Gold nanospheres by surface enhanced raman scattering (SERS)
Mackanic, David G. and Mabbott, Samuel and Faulds, Karen and Graham, Duncan (2016) Analysis of photothermal release of Oligonucleotides from hollow Gold nanospheres by surface enhanced raman scattering (SERS). Journal of Physical Chemistry C. pp. 1-24. ISSN 1932-7447 (https://doi.org/10.1021/acs.jpcc.6b01861)
Preview |
Text.
Filename: Mackanic_etal_JPCC2016_analysis_photothermal_release_oligonucleotides_hollow_gold.pdf
Accepted Author Manuscript Download (684kB)| Preview |
Abstract
The photothermal release of single stranded DNA (ssDNA) from the surface of gold nanoparticles of different shapes and sizes is a promising mode of delivering DNA for gene-therapy applications. Here, we demonstrate the first targeted photothermal release of ssDNA from hollow gold nanospheres (HGNs) and analyse the release of the ssDNA using quantitative surface enhanced Raman scattering (SERS). The HGNs used demonstrate a tunable localized surface plasmon resonance (LSPR) frequency while maintaining size consistency, allowing for selective ssDNA release based on matching the excitation frequency to the plasmon resonance. It is shown that HGNs with resonances at 760 and HGN 670 nm release significant amounts of ssDNA when excited via 785 nm and 640 nm lasers respectively. When excited with a wavelength far from the LSPR of the particles, the ssDNA release is negligible. This is the first demonstration of SERS to analyze the amount of ssDNA photothermally released from the surface of HGNs. In contrast to traditional fluorescence measurements, this SERS based approach provides quantitatively robust data for analysis of ssDNA release and lays a strong foundation for future studies exploiting plasmonically induced ssDNA release.
ORCID iDs
Mackanic, David G., Mabbott, Samuel ORCID: https://orcid.org/0000-0003-4926-5467, Faulds, Karen ORCID: https://orcid.org/0000-0002-5567-7399 and Graham, Duncan ORCID: https://orcid.org/0000-0002-6079-2105;-
-
Item type: Article ID code: 56098 Dates: DateEvent4 April 2016Published4 April 2016Published Online4 April 2016AcceptedNotes: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.jpcc.6b01861 Subjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 06 Apr 2016 00:04 Last modified: 11 Nov 2024 11:23 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/56098