Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5kAcm−2

Tian, Pengfei and Althumali, Ahmad and Gu, Erdan and Watson, Ian M. and Dawson, Martin D. and Liu, Ran (2016) Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5kAcm−2. Semiconductor Science and Technology, 31 (4). pp. 1-12. ISSN 0268-1242

[img] Text (Tian-etal-SST2016-aging-characteristics-of-blue-ingan-micro-light-emitting-diodes)
Tian_etal_SST2016_aging_characteristics_of_blue_ingan_micro_light_emitting_diodes.pdf
Accepted Author Manuscript

Download (745kB)

Abstract

The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm−2 for emerging microLED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.