Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Expected utility theory for monitoring-based decision making

Cappello, Carlo and Zonta, Daniele and Glisic, Branko (2016) Expected utility theory for monitoring-based decision making. Proceedings of the IEEE, 104 (8). pp. 1647-1661. ISSN 0018-9219

Text (Cappello-etal-PIEEE-2016-Expected-utility-theory-for-monitoring-based)
Accepted Author Manuscript

Download (683kB) | Preview


The main purpose of structural health monitoring (SHM) is to obtain information about the state of a structure, in order to guide bridge management decisions. Nevertheless, in practice, once a rigorous estimate of the structural state is available, decisions are usually made based on the decision maker’s intuition or experience. In this paper, we present the implementation of expected utility theory (EUT) in those civil engineering decision problems in which decision makers have to act based on the output of SHM. EUT is an analytical quantitative framework that allows the identification of the financially most convenient decisions, based on the possible outcomes of each action and on the probabilities of each structural state occurring. The advantage of the presented implementation is the optimization of decision strategies in SHM. In the manuscript, we first formalize the solution of single-stage decision processes, in which the decision maker has to take only one action. Then, we formalize the solution of multi-stage decision processes, in which multiple actions may be taken over time. Finally, using an example based on a case study, we describe the variables involved in the analysis of SHM decision problems, discuss the possible results and address the issues that may arise in the application of EUT in real-life settings.