Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Development of a two-temperature open source CFD model for hypersonic reacting flows

Casseau, Vincent and Scanlon, Thomas J. and Brown, Richard E. (2015) Development of a two-temperature open source CFD model for hypersonic reacting flows. In: 20th International Space Planes and Hypersonic Systems and Technologies Conference, MHYP15, 2015-07-06 - 2015-07-09.

[img]
Preview
Text (Casseau-etal-MHYP15-Development-of-two-temperature-open-source-CFD-model-for-hypersonic-reacting-flows)
Casseau_etal_MHYP15_Development_of_two_temperature_open_source_CFD_model_for_hypersonic_reacting_flows.pdf
Accepted Author Manuscript

Download (836kB)| Preview

    Abstract

    The highly complex flow physics that characterise re-entry conditions have to be reproduced by means of numerical simulations with both an acceptable level of accuracy and within reasonable timescales. In this respect, a new CFD solver, hyFoam, has been developed within the framework of the open-source CFD platform OpenFOAM for modelling hypersonic reacting flows. hyFoam has been successfully validated for two 0-degree adiabatic heat bath test cases and the limitations of a one-temperature CFD model have been highlighted. To cope with high-temperature gas chemistry, the internal energy has been decomposed into its elementary energy modes, thus introducing the translational-rotational and the vibrational temperatures. A two-temperature CFD model is being implemented in order to attain a better agreement between CFD and DSMC results. Validation of the code for a single species has been executed while mixture-related libraries are currently being developed. The vibrational-translational relaxation time formulation has also been presented and discussed.