Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

Ma, Junxia and Ding, Feng and Yang, Erfu (2016) Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition. Nonlinear Dynamics, 83 (4). pp. 1895-1908. ISSN 0924-090X

[img]
Preview
Text (Ma-etal-ND-2015-Data-filtering-bassed-least-squares-iterative-algorithm-for-Hammerstein-nonlinear)
Ma_etal_ND_2015_Data_filtering_bassed_least_squares_iterative_algorithm_for_Hammerstein_nonlinear.pdf
Accepted Author Manuscript

Download (243kB)| Preview

    Abstract

    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm.