Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization

McGlone, Thomas and Briggs, Naomi E. B. and Clark, Catriona A. and Brown, Cameron J. and Sefcik, Jan and Florence, Alastair J. (2015) Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization. Organic Process Research and Development, 19 (9). 1186–1202. ISSN 1083-6160

Text (McGlone-etal-OPRD2015-oscillatory-flow-reactors-OFRs-for-continuous-manufacturing-and-crystallization)
Accepted Author Manuscript

Download (2MB)| Preview


    Continuous crystallization is an attractive approach for the delivery of consistent particles with specified critical quality attributes (CQAs), which are attracting increased interest for the manufacture of high value materials, including fine chemicals and pharmaceuticals. Oscillatory flow reactors (OFRs) offer a suitable platform to deliver consistent operating conditions under plug-flow operation while maintaining a controlled steady state. This review provides a brief overview of OFR technology before outlining the operating principles and summarizing applications, emphasizing the use for controlled continuous crystallization. While significant progress has been made to date, areas for further development are highlighted that will enhance the range of applications and ease of implementation of OFR technology. These depend on specific applications but include scale down, materials of construction suitable for chemical compatibility, encrustation mitigation, the enhancement of robust operation via automation, process analytical technology (PAT), and real-time feedback control.