Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The effect of VSC HVDC control on AC system electromechanical oscillations and DC system dynamics

Shen, L. and Barnes, M. and Preece, R. and Milanović, Jovica V. and Bell, K.R.W. and Belivanis, M. (2016) The effect of VSC HVDC control on AC system electromechanical oscillations and DC system dynamics. IEEE Transactions on Power Delivery, 31 (3). pp. 1085-1095. ISSN 0885-8977

Text (Shen-etal-IEEE-TOPD-2015-The-effect-of-VSC-HVDC-control-on-AC-system-electromechanical-oscillations)
Accepted Author Manuscript

Download (1MB) | Preview


In order to strengthen the onshore transmission network in many parts of the world, VSC HVDC will increasingly be utilized. The effect of the operating point of a VSC HVDC link and the control strategies employed can substantially affect the electromechanical oscillatory behavior of the AC network as well as the DC side dynamics. In order that the full, flexible capability of VSC HVDC can be exploited, further study of the effects of these controllers and their interactions with AC system responses is necessary. This paper addresses this gap. Both modal analysis and transient stability analysis are used to highlight tradeoffs between candidate VSC-HVDC power controllers and to study the electromechanical performance of the integrated AC/DC model. Tests are carried out on both a generic two-area model and a large-scale realistic network with detailed AC generator and HVDC models.