Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Approximate uncertainty modeling in risk analysis with vine copulas

Bedford, Tim and Daneshkhah, Alireza and Wilson, Kevin J. (2016) Approximate uncertainty modeling in risk analysis with vine copulas. Risk Analysis, 36 (4). pp. 792-815. ISSN 0272-4332

[img]
Preview
Text (Bedford-etal-RA-2015-Approximate-uncertainty-modelling-in-risk-analysis)
Bedford_etal_RA_2015_Approximate_uncertainty_modelling_in_risk_analysis.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modelling joint uncertainties with probability distributions. This paper focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica and others on vines as a way of constructing higher dimensional distributions which do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The paper provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas which have such good levels of approximation. We extend previous approaches using vines by considering non-constant conditional dependencies which are particularly relevant in financial risk modelling. We discuss how such models may be quantified, in terms of expert judgement or by fitting data, and illustrate the approach by modelling two financial datasets.