Approximate uncertainty modeling in risk analysis with vine copulas
Bedford, Tim and Daneshkhah, Alireza and Wilson, Kevin J. (2016) Approximate uncertainty modeling in risk analysis with vine copulas. Risk Analysis, 36 (4). pp. 792-815. ISSN 1539-6924 (https://doi.org/10.1111/risa.12471)
Preview |
Text.
Filename: Bedford_etal_RA_2015_Approximate_uncertainty_modelling_in_risk_analysis.pdf
Final Published Version License: Download (1MB)| Preview |
Abstract
Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modelling joint uncertainties with probability distributions. This paper focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica and others on vines as a way of constructing higher dimensional distributions which do not suffer from some of the restrictions of alternatives such as the multivariate Gaussian copula. The paper provides a fundamental approximation result, demonstrating that we can approximate any density as closely as we like using vines. It further operationalizes this result by showing how minimum information copulas can be used to provide parametric classes of copulas which have such good levels of approximation. We extend previous approaches using vines by considering non-constant conditional dependencies which are particularly relevant in financial risk modelling. We discuss how such models may be quantified, in terms of expert judgement or by fitting data, and illustrate the approach by modelling two financial datasets.
ORCID iDs
Bedford, Tim ORCID: https://orcid.org/0000-0002-3545-2088, Daneshkhah, Alireza and Wilson, Kevin J.;-
-
Item type: Article ID code: 54053 Dates: DateEvent30 April 2016Published2 September 2015Published Online15 July 2015AcceptedSubjects: Social Sciences > Industries. Land use. Labor > Risk Management Department: Strathclyde Business School > Management Science Depositing user: Pure Administrator Date deposited: 24 Aug 2015 15:46 Last modified: 31 Oct 2024 01:39 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/54053