Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes

Lim, Li Ying and Koh, Pei Yin and Somani, Sukrut and Al Robaian, Majed and Karim, Reatul and Yean, Yi Lyn and Mitchell, Jennifer and Tate, Rothwelle J. and Edrada-Ebel, RuAngelie and Blatchford, David R. and Mullin, Margaret and Dufès, Christine (2015) Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomedicine: Nanotechnology, Biology and Medicine, 11. pp. 1445-1454. ISSN 1549-9634

[img]
Preview
Text (Lim-etal-NNBM2015-tumor-regression-intravenous-administration-lactoferrin-lactoferricin-bearing-dendriplexes)
1_s2.0_S1549963415000957_main.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy.