Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene-appended dipeptides

Nalluri, Siva Krishna Mohan and Shivarova, Nadezhda and Kanibolotsky, Alexander L. and Zelzer, Mischa and Gupta, Swati and Frederix, Pim and Skabara, Peter J. and Gleskova, Helena and Ulijn, Rein V. (2014) Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene-appended dipeptides. Langmuir, 30 (41). pp. 12429-12437. ISSN 0743-7463

[img] PDF (Nalluri-etal-Langmuir2014-conducting-nanofibers-and-organogels)
Nalluri_etal_Langmuir2014_conducting_nanofibers_and_organogels.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB)

Abstract

In this article, we demonstrate the non-aqueous self-assembly of a low-molecular-mass organic gelator based on an electroactive p-type tetrathiafulvalene (TTF)-dipeptide bioconjugate. We show that a TTF moiety appended with diphenylalanine amide derivative (TTF-FF-NH2) self-assembles into one-dimensional nanofibers that further lead to the formation of self-supporting organogels in chloroform and ethyl acetate. Upon doping of the gels with electron acceptors (TCNQ/iodine vapor), stable two-component charge transfer gels are produced in chloroform and ethyl acetate. These gels are characterized by various spectroscopy (UV-vis-NIR, FTIR and CD), microscopy (AFM and TEM), rheology and cyclic voltammetry techniques. Furthermore, conductivity measurements performed on TTF-FF-NH2 xerogel nanofiber networks formed between gold electrodes on a glass surface indicate that these nanofibers show a remarkable enhancement in the conductivity after doping with TCNQ.