Conducting nanofibers and organogels derived from the self-assembly of tetrathiafulvalene-appended dipeptides. Langmuir, 30 (41). pp. 12429-12437. ISSN 0743-7463 , http://dx.doi.org/10.1021/la503459y

This version is available at https://strathprints.strath.ac.uk/49506/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Conducting Nanofibers and Organogels Derived from the Self-Assembly of Tetrathiafulvalene-Appended Dipeptides

Siva Krishna Mohan Nalluri,‡,§ Nadezhda Shivarova,‡ Alexander L. Kanibolotsky,‡ Mischa Zelzer,‡,8 Swati Gupta,‡ Pim W. J. M. Frederix,‡ Peter J. Skabara,‡ Helena Gleskova,§,† and Rein V. Ulijn#,	

WestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
§Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
†Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, United Kingdom
#Advanced Science Research Center (ASRC), City University of New York, New York 10031, United States
Department of Chemistry, Hunter College, City University of New York, New York 10065, United States

ABSTRACT: We demonstrate the nonaqueous self-assembly of a low-molecular-mass organic gelator based on an electroactive p-type tetrathiafulvalene (TTF)–dipeptide bioconjugate. We show that a TTF moiety appended with diphenylalanine amide derivative (TTF-FF-NH₂) self-assembles into one-dimensional nanofibers that further lead to the formation of self-supporting organogels in chloroform and ethyl acetate. Upon doping of the gels with electron acceptors (TCNQ/iodine vapor), stable two-component charge transfer gels are produced in chloroform and ethyl acetate. These gels are characterized by various spectroscopy (UV–vis–NIR, FTIR, and CD), microscopy (AFM and TEM), rheology, and cyclic voltammetry techniques. Furthermore, conductivity measurements performed on TTF-FF-NH₂ xerogel nanofiber networks formed between gold electrodes on a glass surface indicate that these nanofibers show a remarkable enhancement in the conductivity after doping with TCNQ.

INTRODUCTION

There is significant current interest in the fabrication of functional organic nanomaterials based on electronically active π-conjugated chromophores, with diverse proposed applications in next-generation optoelectronic and bioelectronic devices.1–6 One challenge in this area is the difficulty in obtaining a high degree of organization among the constituent electroactive components, ultimately affecting the overall performance of the devices.7 The supramolecular assembly of π-conjugated chromophores into one-dimensional (1D) nanostructures with a high aspect ratio provides a potential strategy to tune the photonic/electronic properties as it facilitates the long-range intermolecular charge delocalization of π-electron clouds.8–10 In this respect, low-molecular-mass organic gelators (LMOGs) have attracted interest because of their ability to self-assemble into entangled three-dimensional (3D) fibrous network structures driven by multiple, weak intermolecular forces such as π–π stacking, van der Waals, electrostatic, metal coordination, charge transfer, and H-bonding interactions.11,12 A variety of supramolecular strategies have been developed to demonstrate the self-assembly of organogelators13–16 based on π-electron-deficient (n-type) aromatic building blocks, including naphthalene bisimides17 and perylene bisimides,18,19 as well as π-electron-rich (p-type) aromatic building blocks, including triphenylenes,20 oligo(p-phenylenevinylene)s,21 oligothiophenes,22 porphyrins,23 phthalocyanines,24 merocyanines,25 and tetrathiafulvalenes (TTFs).26–33 In particular, TTF-based LMOGs have been extensively investigated for the development of organic conducting nanomaterials27–30 and stimuli-responsive materials.26,31 It has been shown that TTF and its derivatives can form charge transfer complexes with various electron acceptors such as tetracyano-p-quinodimethane (TCNQ) and iodine, and the resultant charge transfer complexes exhibit high electrical conductivity.26,32,33

One powerful strategy for the formation of highly organized π-conjugated LMOGs is focused on bioconjugates of π-conjugated chromophores and self-assembling peptides,34–36 in which the precise orientation and packing of the π-conjugated chromophores can be optimized by the intermolecular H-bonding of peptide motifs.37–40 In recent years, various functional organogels have been reported based on bioconjugates of peptides and ferrocene,41 azobenzene,41 stilbene,42 and pyrene.41,43 Supramolecular self-assembly of

Supporting Information

Received: August 29, 2014
Revised: September 25, 2014
Published: September 26, 2014

© 2014 American Chemical Society
 pubs.acs.org/Langmuir 12429 dx.doi.org/10.1021/la503459y | Langmuir 2014, 30, 12429–12437
bioconjugates of optoelectronically active (also including p- or n-type) \(\pi \)-conjugated chromophores and peptides in organic solvents have been reported.\(^{44,45}\) We have very recently reported the first example of fluorescent organogel based on bola-amphiphile type bioconjugates of n-type perylene bisimide and dipeptides.\(^{46}\) However, this system forms gels only in high boiling point polar organic solvents such as DMF and DMSO and was not tested for electroconductance.\(^{46}\) To the best of our knowledge, the conducting nanofibers and organogels derived from the self-assembly of TTF–peptide bioconjugates have not been reported, and such nanostructures have not been used to measure conductivity directly.\(^{3,32,47,48}\)

Herein, we investigate the supramolecular self-assembly of various bioconjugates of short peptides and TTF. For this purpose, we chose two types of functional TTF–peptide bioconjugates by simply varying the length and sequence of the peptide motifs present (Figure 1a). One is a TTF-appended aromatic dippeptide derivative 1 (TTF-FF-NH\(_2\)): that is, TTF moiety functionalized with a diphenylalanine amide derivative (FF-NH\(_2\)). The FF\(^{49}\) sequence was selected as a suitable self-assembling peptide motif because it has been widely employed by us\(^{50}\) and others\(^{49,51,55}\) previously. The other conjugate made use of an aliphatic tripeptide derivative 2 (TTF-L\(_3\)-OMe): that is, TTF moiety functionalized with a trileucine methyl ester derivative (L\(_3\)-OMe). The L\(_3\) peptide sequence was selected based on our previous results using 9-fluorenylmethoxycarbonyl (Fmoc) peptides.\(^{47,56}\) The self-assembly of these bioconjugates is driven by the \(\pi-\pi \) stacking of TTF moieties as well as the intermolecular H-bonding of peptide motifs (Figure 1). The primary objectives of this work are (i) characterization of nanostructures formed in nonaqueous media using various spectroscopy, microscopy, and rheology techniques, (ii) investigation of the effect of the presence of charge transfer interactions between TTF and TCNQ/iodine vapor on self-assembling electroactive nanostructures, and finally (iii) measurement of the electrical conductivity of electroactive xerogel networks formed both in the absence and presence of charge transfer in ambient air at room temperature (Figure 1).

EXPERIMENTAL SECTION

Materials. All commercial reagents were used as supplied. The compounds 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iron(III) perchlorate hydrate (Fe(ClO\(_4\))\(_3\)·H\(_2\)O) were purchased from Sigma-Aldrich (UK). All solvents were used as supplied (analytical or HPLC grade) without further purification, unless otherwise mentioned.

Synthesis. The TTF–peptide bioconjugates 1 and 2 were synthesized as reported in the Supporting Information. All reactions were carried out in oven-dried glassware and magnetically stirred. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 plates. All compounds were visualized either by UV light source (254 nm) or by dipping in basic permanganate solution. Column chromatography was carried out by using silica gel 60 (230–400 mesh). High-resolution mass spectra (ESI-HRMS) were recorded on a Thermo Electron Exactem. \(^1\)H and \(^{13}\)C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV400 spectrometer in the deuterated solvents. All chemical shifts (\(\delta \)) are quoted in ppm, and coupling constants (\(J \)) are given in Hz. Residual signals from the solvents were used as an internal reference.

Gelation Experiments. The TTF-FF-NH\(_2\) gelator (11.7 mg, 20 mM) was mixed in a particular organic solvent (1 mL) taken in a screw-capped sample vial. The mixture was vortexed followed by sonication for few seconds and heated until the solid was completely dissolved. The sample vial was cooled to room temperature and left for at least few hours under ambient conditions. Gelation was considered to have occurred when a homogeneous solid-like material was

Figure 1. (a) Molecular structures of p-type TTF-peptide bioconjugates: TTF–diphenylalanine amide 1 (TTF-FF-NH\(_2\)) and TTF-trileucine methyl ester 2 (TTF-L\(_3\)-OMe) derivatives, and TCNQ acceptor used in this study. Schematic representation of (b) the method of electrical conductivity measurements of xerogel nanofiber networks drop-casted between gold electrodes on a sodium-free glass substrate and (c) the proposed mechanism of the nonaqueous self-assembly process of TTF–peptide bioconjugates and the formation of charge transfer and mixed-valence states upon doping with TCNQ and iodine, respectively.
obtained that exhibited no gravitational flow. In the case of chloroform, gelation was observed at 30 min after cooling to room temperature. Samples were incubated at room temperature for at least 12 h before further characterization, unless otherwise stated. In the case of charge transfer donor–acceptor organogels, both TTF-FF-NH$_2$ donor (2.93 mg) and TCNQ acceptor (1.02 mg) were mixed together in 250 μL of the solvent (chloroform/ethyl acetate) taken in a screw-capped vial. The self-supporting organogels were also obtained in this case by following the above procedure. The organogels were then characterized after equilibration for few hours under ambient conditions. The similar gelation tests were also performed on TTF-L$_3$-OMe (12.9 mg, 20 mM) by adding to a particular organic solvent (1 mL). The results are summarized in Table S1 of the Supporting Information.

UV–Vis Absorption Spectroscopy. UV–vis absorption spectra were recorded on a Jasco V-660 spectrophotometer. Samples were prepared in quartz cuvettes with 1 cm path length. The absorbance of TTF-FF-NH$_2$ solution in chloroform was measured in the absence and presence of TCNQ. The total chromophore concentration is 5 mM in this case.

UV–Vis–NIR Absorption Spectroscopy. UV–vis–NIR absorption spectra were recorded on a Shimadzu UV-2600 spectrophotometer with integrating sphere attachment ISR-2600 Plus equipped with two detectors (photomultiplier and InGaAs detector). The measurable wavelength range was 220–1400 nm. The gel sample in chloroform (20 mM) was prepared by depositing the hot solution of TTF-FF-NH$_2$ inside a quartz cuvette with 1 cm path length, and the cuvette was placed horizontally. After about 30 min, the solution was then developed into a self-supporting organogel on the sidewall of the quartz cuvette. The absorbance of this xerogel (dried for 30 min) was measured from 220 to 1400 nm. After doping with iodine by exposing the sample cuvette to iodine vapor for 50 min in a sealed container with iodine crystals (∼10 mg), the absorbance of the gel was measured again. The appearance of a new absorption band near 850 nm accompanied by an increase in the absorbance indicated the formation of cation radical species and the corresponding mixed-valence states over time, which led to a change in color of the gel from yellow to dark brown.

Oscillatory Rheology. The mechanical properties of the organogels were investigated by dynamic frequency sweep experiments which were carried out by a strain-controlled rheometer (Kinexus Pro Rheometer) by employing parallel plates of 20 mm diameter with 0.5 mm gap. The experiments were performed at 20 °C, and this temperature was controlled throughout the experiment using an integrated electrical heater. Additional precautions were taken to minimize solvent evaporation and to keep the sample hydrated: a solvent trap was used and the internal atmosphere was kept saturated. To ensure the measurements were made in the linear viscoelastic regime, an amplitude sweep was performed, and the results showed no variation in elastic modulus (G') and viscous modulus (G'') up to a strain of 1%. The dynamic modulus of the gels was measured as a function of frequency, where the frequency sweeps were carried out between 0.1 and 100 Hz. The measurements were repeated three times to ensure reproducibility, with the average data shown.

Fourier Transform Infrared (FTIR) Spectroscopy. FTIR spectra were recorded on a Bruker optics Vertex 70 spectrophotometer. The spectra were taken in the region between 800 and 4000 cm$^{-1}$ with a resolution of 1 cm$^{-1}$ and averaged over 20 scans. Spectra were background-subtracted to correct for atmospheric interference. For all measurements, the nondeuterated solvents (Sigma-Aldrich, UK) were used directly. The organogels were loaded between two CaF$_2$ windows using a 5 μm PTFE spacer. The spectra were recorded at 24 h after cooling the heated solution to room temperature under ambient conditions. For xerogel doping measurements, the instrument was used in attenuated total reflectance (ATR) mode. The gel sample in chloroform was allowed to dry on the diamond crystal, after which the spectra were taken. Samples were doped by placing I$_2$ crystals next to the dried sample and covering the sample with a beaker for 2 min, after which the beaker and I$_2$ were removed.

Cyclic Voltammetry (CV). Cyclic voltammetry (CV) measurements were performed on CH Instruments 660A electrochemical workstation with iR compensation using anhydrous chloroform as the solvent. The electrodes were platinum disk, platinum wire, and silver–silver chloride reference electrodes. All solutions contained substrates in concentrations of ca. 0.1 mM. The gels were cleaved mica sheets (G250-2 mica sheets 1 in. × 1 in. × 0.006 in.; Agar Scientific Ltd., Essex, UK). Each sample was air-dried overnight in a dust-free environment prior to AFM imaging. For comparison, the sample solution was also drop-casted for AFM imaging on gold-coated glass surfaces used for electrical conductivity measurements. The images were obtained by scanning the mica/glass surfaces in air under ambient conditions using a Veeco diNNOVA scanning probe microscope (VEECO/BRUKER, Santa Barbara, CA) operated in tapping mode. The AFM measurements were obtained using sharp silicon probes (RTESP; Veeco Instruments SAS, Dourdan, France). AFM scans were taken at S12 × S12 pixels resolution and produced topographic images of the samples in which the brightness of features increases as a function of height. Typical scanning parameters were as follows: tapping frequency 326 kHz, integral and proportional gains 0.1 and 0.3, respectively, and constant height 1.3 nm, scanning speed 1.0 Hz. AFM images were collected from two different samples and at random spot surface sampling (at least five areas). The images were analyzed using NanoScope Analysis software version 1.40.

Circular Dichroism (CD). CD spectra were measured on a Jasco J600 spectropolarimeter in a 0.1 mm path length cylindrical cell, with 1 s integration, step resolution of 1 mm, response of 0.5 s with a bandwidth of 1 nm and slit width of 1 mm. The freshly prepared samples (hot solution) were directly added to the cell using a pipet, and the spectra were recorded after equilibration for 24 h. The high tension (HT) voltage values reach maximum below the wavelengths of 250 nm due to the high extinction coefficient of these semiconductor chromophores under these conditions, and the CD spectra could not be recorded in this wavelength region.

Atomic Force Microscopy (AFM). For AFM experiments, 20 μL of sample solution (as a gel/sol) was drop-casted onto a freshly cleaved mica surface (G250-2 mica sheets 1 in. × 1 in. × 0.006 in.; Agar Scientific Ltd., Essex, UK). Each sample was air-dried overnight in a dust-free environment prior to AFM imaging. For comparison, the sample solution was also drop-casted for AFM imaging on gold-coated glass surfaces used for electrical conductivity measurements. The images were obtained by scanning the mica/glass surfaces in air under ambient conditions using a Veeco diNNOVA scanning probe microscope (VEECO/BRUKER, Santa Barbara, CA) operated in tapping mode. The AFM measurements were obtained using sharp silicon probes (RTESP; Veeco Instruments SAS, Dourdan, France). AFM scans were taken at S12 × S12 pixels resolution and produced topographic images of the samples in which the brightness of features increases as a function of height. Typical scanning parameters were as follows: tapping frequency 326 kHz, integral and proportional gains 0.1 and 0.3, respectively, and constant height 1.3 nm, scanning speed 1.0 Hz. AFM images were collected from two different samples and at random spot surface sampling (at least five areas). The images were analyzed using NanoScope Analysis software version 1.40.

Transmission Electron Microscopy (TEM). Transmission electron microscopy (TEM) images were captured using a LEO 912 energy filtering transmission electron microscope operating at 120 kV fitted with 14 bit/2 K Proscan CCD camera. Carbon-coated copper grids (200 mesh) were glow discharged in air for 30 s. The sample film was touched onto the gel surface for 3 s and blotted down using filter paper. Negative stain (20 μL, 1% aqueous molybdate) is then developed into a self-supporting organogel on the sidewall of the quartz cuvette. The absorbance of this xerogel (dried for 30 min) was measured at 220 to 1400 nm. After doping with iodine by exposing the sample cuvette to iodine vapor for 50 min in a sealed container with iodine crystals (∼10 mg), the absorbance of the gel was measured again. The appearance of a new absorption band near 850 nm accompanied by an increase in the absorbance indicated the formation of cation radical species and the corresponding mixed-valence states over time, which led to a change in color of the gel from yellow to dark brown.

Electrical Conductivity Measurements. Plane-parallel gold contacts were thermally evaporated on sodium-free glass substrates of 1 × 1 cm2 with varying gap lengths of approximately 30, 50, 70, and 90 μm and a gap width of 1000 μm. The substrates were prepared by drop-casting the solution (either as a hot solution or after cooling the heated solution to room temperature) of TTF-FF-NH$_2$ (in chloroform) and left overnight under ambient conditions for structure formation and solvent evaporation. On the following day, the samples were placed in a vacuum chamber for an hour prior to the measurements. Similarly, the substrates doped with TCNQ were prepared by drop-casting the mixture of TTF-FF-NH$_2$ and TCNQ (1:1 ratio) in chloroform and left overnight under ambient conditions for structure formation and solvent evaporation. For the following day, the samples were placed in a vacuum chamber for an hour prior to the measurements. Similarly, the substrates doped with TCNQ were prepared by drop-casting the mixture of TTF-FF-NH$_2$ and TCNQ (1:1 ratio) in chloroform and left overnight under ambient conditions for structure formation and solvent evaporation. While the iodine doping was achieved by exposing the drop-casted TTF-FF-NH$_2$ substrates (without TCNQ) to iodine vapor for about 30 min in a sealed container with iodine crystals (∼20 mg). The current–voltage (I–V) characteristics were measured in ambient air at room temperature using Signatone probe station and Agilent B1500A semiconductor parameter analyzer. The voltage was swept from 0 to 12431

12431
20 V and in some cases up to 100 V. Temperature-dependent measurements were achieved by placing the sample on a thermoelectric heater/cooler in an in-house built stainless steel chamber connected to Agilent B1500A semiconductor parameter analyzer. The temperature of the Peltier element was controlled by an electric circuit with thermistor feedback via LabVIEW. The spring-loaded probes made electrical contact to the gold electrodes, and the measurements were taken from 20 to ~80 °C. The leakage current of the measurement system was subtracted from the \(I-V\) measurement of the samples. Two sets of samples were measured to obtain the dark conductivity of the gels of 1 in chloroform before and after doping with TCNQ/iodine.

RESULTS AND DISCUSSION

The syntheses of 1 and 2 were carried out by the condensation of TTF-substituted carboxylic acids and the corresponding free amine derivatives of diphenylalanine amide (FF-NH₂) and trileucine methyl ester (L₃-OME). Details of the synthesis and characterization are reported in the Supporting Information. The analytical and spectroscopic data for 1 and 2 are fully consistent with their molecular structures. At first, the gelling abilities of both compounds 1 and 2 were tested in a number of common organic solvents. Typically, the compound (1 or 2) at 20 mM concentration was taken in an organic solvent and sequentially vortexed, sonicated, and heated until the solid was dissolved completely and left to stand at room temperature for few hours under ambient conditions. It was observed that 1 formed self-supporting yellow organogels particularly in chloroform (transparent gel formed within 30 min), ethyl acetate (slightly opaque gel formed within 2–3 h), and acetone (opaque gel formed within 2–3 h), which are stable in the gel state for several months. Formation of the gel in acetone required sonication for a few minutes before cooling the hot solution of 1 to room temperature, while direct cooling of hot solution without sonication led to precipitation and no gel was formed. Similar observations were reported elsewhere. Tetrahydrofuran, methanol, and DMSO were found to be good solvents for 1, while it was found to precipitate in acetonitrile, cyclohexane, and benzene. The observations suggest differential self-assembly of 1 in various solvents which is likely to be dependent on the balance between intermolecular \(\pi-\pi\) stacking of the hydrophobic TTF units and the H-bonding of diphenylalanine peptide motifs, similar to what was observed for perylene bisimide-appended peptides.

In contrast, gelation was not observed for compound 2, as it was either completely soluble or precipitated in these common organic solvents under ambient conditions. A complete list of solvents tested for 1 and 2 is summarized in Table S1 of the Supporting Information. The contrasting behavior of 1 and 2 can be reasonably explained by the fact that the presence of both aromatic (instead of aliphatic for 2) and terminal free amide (instead of methyl ester for 2) groups in the peptide backbone of 1 give rise to additional \(\pi-\pi\) stacking interactions combined with the extended H-bonding, offering a vital contribution to the overall thermodynamic stability of aggregates of 1 compared to the amorphous aggregates of 2. Therefore, only the self-assembly of 1 was then studied in more detail.

We first focused on the morphological investigation of 1 in different solvents, e.g., chloroform, ethyl acetate, and tetrahydrofuran, by atomic force microscopy (AFM) as well as transmission electron microscopy (TEM). Tapping-mode AFM imaging of dried chloroform and ethyl acetate gel samples of 1 on mica revealed the formation of a dense network of entangled nanofibers of up to several micrometers in length (Figure 2a,b). The difference in transparency of the gels in various solvents (transparent, slightly opaque, and opaque gels in chloroform, ethyl acetate, and acetone, respectively) is due to the variation in the solubility with respect to temperature and assembly kinetics combined with the network properties of the nanofibers obtained. Also, TEM imaging of negatively stained (1% aqueous methylamine vanadate as a staining agent) dried gel samples of 1 in chloroform (on carbon-coated copper grid) similarly revealed the presence of micrometer-long nanofibers (Figure S1 in the Supporting Information). In contrast, both AFM (Figure 2c) and TEM (see Figure S1 in the Supporting Information) images of solution of 1 in tetrahydrofuran showed the presence of vesicles with variable diameters. It is noteworthy that the self-assembly of 1 into vesicles (instead of nanofibers) which lack the ability to generate a cross-linked network further explains the nongelation behavior of 1 in tetrahydrofuran. We then turned our attention to investigate the self-assembly behavior of 1 only in chloroform in further details, owing to its transparent gel nature and rapid self-assembly behavior compared to ethyl acetate system.

Having established the stable self-assembling nanofibers of 1 in chloroform, the ability to form the charge transfer complex within the \(\pi\)-stacked TTF assemblies of 1 was further
This can be approached in two ways. One approach is the partial oxidation of TTF moieties (giving rise to a mixed-valence state) which can be done either electrochemically or chemically, while the other approach is the chemical doping of the gels with electron acceptors such as TCNQ and iodine vapor. In order to investigate the first approach, the electrochemical properties of TTF moiety of I in chloroform were first analyzed by cyclic voltammetry that displayed two quasi-reversible one-electron oxidation waves in which the first oxidation at ca. $E_{1/2} = +0.04$ V (vs Fe/Fe$^+$) and the second oxidation at ca. $E_{1/2} = +0.35$ V (vs Fe/Fe$^+$) occurred which correspond to the formation of TTF radical cation (TTF$^{+}$) and TTF dication (TTF$^{2+}$) species, respectively (Figure S2 in the Supporting Information). The electrochemical oxidation of TTF moiety of gel I in chloroform (20 mM) was also observed by applying an oxidation potential of +0.8 V for about 30 min and after which the gel was transformed into a dark brown-green suspension (Figure 3a). As reported previously, such a...
The time was monitored after removing the iodine crystals placed next to the xerogel sample.

1

stretching frequency region of TCNQ. (e) UV
formation of intermolecular
along the length of the nano
charge transfer gels likely with better conducting pathways
and TCNQ acceptors, gives rise to the formation of reinforced
allowing the more ordered coassembly of TTF donors of
within the self-assembled nanostructures, thereby perhaps
that the presence of additional charge transfer interactions
within the self-assembled nanostructures, thereby perhaps
allowing the more ordered coassembly of TTF donors of I
and TCNQ acceptors, gives rise to the formation of reinforced
charge transfer gels likely with better conducting pathways
along the length of the nanofibers.

Similarly, such charge transfer complexation within the
stacked TTF assemblies of I can also be obtained by doping
with iodine. The UV–vis–NIR and FTIR spectroscopy
techniques were employed to confirm the charge transfer
complexation on xerogel networks (surface dried films) of I
upon exposed to iodine vapor in a sealed container. To this
end, we prepared the gel samples of I in chloroform on the
sidewall of a quartz cuvette, dried for 30 min, and exposed the
xerogel sample to iodine vapor for 50 min. The corresponding
UV–vis–NIR absorption spectra of the doped gel sample in
Figure 4e revealed the appearance of a broad absorption band
at around 850 nm, which is a characteristic band for the
formation of a complete charge transfer state between dimeric
cation radical species of stacked TTF units (TTF$^+\pi^-\pi^+\pi^-$).
Additionally, the significant increase in the absorbance in the
higher wavelength region (>600 nm) indicates the formation of a
more conducting partial charge transfer (mixed-valence) state
between neutral and cation radical species of TTF moieties
((TTF)$_n$(I)$_m$), where $n < 1$) within the stacked TTF assemblies of I.
Also, the charge transfer complex formation in the xerogel
networks of I upon exposing to iodine vapor for 2 min was
successfully confirmed by the significant increase in the
absorbance over time above 1700 cm$^{-1}$ region in the FTIR
spectra (Figure 4f), indicating the formation of a mixed-valence
state within the stacked TTF assemblies of xerogel of I.

The electrical conductivity of nanofibers obtained by xerogel
samples of I from chloroform was further measured. The
conductivity measurements were performed by drop-casting the
gel samples between gold electrodes deposited on a sodium-
free glass surface. All measurements for undoped and doped
xerogel samples of I showed approximately linear $1-V$
characteristics (Figure 5a). This indicates Ohmic rather than
rectifying contacts. The conductivity of the xerogel of I was
calculated as follows

$$R = \rho \frac{L}{dW} = \frac{1}{\sigma} \frac{L}{dW} = \frac{1}{G}$$

where R is resistance of the xerogel film, ρ is its resistivity, L is the length of the gap between gold contacts, d is the thickness

Figure 4. Self-assembly of bioconjugate 1 in chloroform before and after doping with TCNQ/iodine vapor. (a) UV–vis absorption spectra confirming the formation of two-component charge transfer complex between TTF of I and TCNQ. (b) Stiffness of gels of I before and after doping with TCNQ, as measured by oscillatory rheology. (c) Tapping-mode AFM image of charge transfer gel of I after doping with TCNQ. The inset shows the digital photograph of TCNQ doped charge transfer gel of I. (d) The amide I region of the FTIR spectra of gel of I showing the formation of intermolecular β-sheet-like H-bonding before and after doping with TCNQ. The spectra in the inset shows the changes in CN stretching frequency region of TCNQ. (e) UV–vis–NIR absorption spectra showing the charge transfer complex formation upon exposing the gel of I to iodine vapor in a sealed container. (f) FTIR spectra monitored over time after exposing the xerogel of I to iodine vapor in a sealed container. The time was monitored after removing the iodine crystals placed next to the xerogel sample.

More text...
Fig. 5. (a) Current−voltage (I−V) characteristics and (b) the temperature-dependent conductivity measurements of the xerogels of 1 (obtained from chloroform) before and after doping with TCNQ/iodine vapor.

The conductivity of the film, \(W \) is the width of the gold contacts, \(\sigma \) is the conductivity of the film, and \(G \) is its conductance. From this, it can be seen that

\[
\sigma = G \frac{L}{dW}
\]

(2)

The dark conductivity was measured as a function of temperature between 20 and 80 °C for both undoped and iodine doped xerogel samples of 1 obtained from chloroform and fit with the following exponential dependence

\[
\sigma = \sigma_0 \exp \left(-\frac{E_a}{k_B T} \right)
\]

(3)

where \(T \) is the absolute temperature, \(k_B \) is the Boltzmann constant, \(E_a \) is the activation energy of the conductivity, and \(\sigma_0 \) is the conductivity prefactor. The activation energy \(E_a \) can be found as the slope of the straight line on a semilogarithmic plot of the conductivity versus the reciprocal thermal energy. Whether band theory for structurally ordered materials, tight-binding models for weakly disordered systems, or hopping models for localized charges in strongly disordered materials are employed, the activation energy represents the energy barrier for the drifting charge carriers to reach the transport level or hop to the neighboring electronic site.

The conductivity of the undoped xerogel of 1 shown in Figure 5b was \(\sigma_{20 \, ^\circ C} = 1.9 \times 10^{-10} \, \text{S cm}^{-1} \) (typically behaving as undoped semiconductor), and the activation energy was \(E_a = 0.67 \, \text{eV} \). Interestingly, the conductivity of xerogel of 1 doped with TCNQ remarkably enhanced to \(\sigma_{20 \, ^\circ C} = 3.6 \times 10^{-4} \, \text{S cm}^{-1} \) and the activation energy was \(E_a = 0.18 \, \text{eV} \). However, the conductivity of xerogel of 1 after iodine doping (30 min) was only increased to \(\sigma_{20 \, ^\circ C} = 6.4 \times 10^{-7} \, \text{S cm}^{-1} \) (more conducting behavior in the charge transfer state), and the corresponding activation energy was \(E_a = 0.53 \, \text{eV} \). In particular, the remarkable enhancement in the conductivity for TCNQ doped xerogels is likely to depend on the strong intermolecular charge transfer interactions between TTF and TCNQ moieties as well as the length of stacks obtained. The \(\sigma_{20 \, ^\circ C} \) of four samples of the undoped xerogel of 1 with varied \(L \) and \(d \) was the same within ±17%, while the \(E_a \) showed standard deviation of ±0.07 eV. After doping with TCNQ/iodine, \(\sigma_{20 \, ^\circ C} \) values fell within ±35−45%, while \(E_a \) exhibited smaller standard deviation of ±0.03 eV. Given the fibrous morphology of the xerogel samples of 1 (Figures 2a and 4c), some deviations are expected. Better connectivity of the densely populated nanofiber areas would lead to higher conductivity. In addition, since the nanofibers exhibit random orientation (Figures 2a and 4c), the effect of the direction of the applied electric field should be insignificant.

The increase in the conductivity upon TCNQ/iodine doping of xerogel samples of 1 indicated the formation of a more conducting charge transfer state (Figures 4e,f), resulting in the increased conductivity prefactor. The significant reduction in the activation energy after TCNQ doping of xerogel samples of 1 suggests tighter packing of the TTF moieties due to strong charge transfer interactions between TTF and TCNQ moieties. Additionally, the temperature dependent conductivity measurements between 20 and 80 °C reveal an exponential dependence of conductivity on temperature which is typical for semiconductor materials. Interestingly, our observations are similar to the values reported by Kitamura et al., where it was shown that the conductivity of the nanofiber networks composed of a TTF moiety functionalized with L-isoleucine in aromatic liquid crystals (instead of common organic solvents) exhibit ca. \(3 \times 10^{-10} \, \text{S cm}^{-1} \) when undoped and \(2 \times 10^{-7} \, \text{S cm}^{-1} \) after iodine doping for 2 min which was further increased to \(3 \times 10^{-5} \, \text{S cm}^{-1} \) after 1 week, while the doping of fibers with TCNQ increased the conductivity to \(1 \times 10^{-3} \, \text{S cm}^{-1} \). All these results consistently indicate that the two-component charge transfer nanofibers of TTF–dipeptide bioconjugates, formed upon doping with TCNQ/iodine vapor, exhibit good conductivity and clearly behave as semiconducting nanomaterials.

CONCLUSIONS

In summary, we successfully demonstrated the supramolecular self-assembly of p-type TTF-dipeptide bioconjugates into 1D nanofibers that further lead to the development of self-supporting gels in common organic solvents such as chloroform and ethyl acetate. It was also shown that the gels in chloroform (or ethyl acetate) can be doped with TCNQ/iodine vapor to form stable two-component charge transfer gels. The charge transfer complexation was further confirmed by various spectroscopy, microscopy, and rheology techniques. Moreover, the investigation of the conductivity of the nanofiber xerogel networks formed between gold electrodes on a glass surface showed a remarkable enhancement in the conductivity from \(1.9 \times 10^{-10} \) (undoped) to \(3.6 \times 10^{-4} \, \text{S cm}^{-1} \) when doped with TCNQ and \(6.4 \times 10^{-7} \, \text{S cm}^{-1} \) when exposed to iodine vapor. This approach certainly provides potential opportunities for the bottom-up fabrication of cost-effective functional biomaterials that may find applications in interfacing biology with electronic devices such as organic and bioinspired solar cells, smart biomaterials, and biosensors.

ASSOCIATED CONTENT

Supporting Information

Synthesis and experimental details, additional spectroscopy and microscopy results, and copies of \(^1\)H and \(^{13}\)C nuclear magnetic
resonance (NMR) spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors
E-mail siva.nalluri@strath.ac.uk (S.K.M.N.).
E-mail helena.gleskova@strath.ac.uk (H.G.).
E-mail rein-uljin@strath.ac.uk (R.V.U.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the US Air Force (AFOSR, grant no. 12448RK7359A) and EPSRC. The authors thank Conor Moynihan, Joanna Sobon, Jan Čermák, and Dr. A. R. Inigo for their assistance. We also thank Margaret Mullin from University of Glasgow for help in TEM imaging.

REFERENCES

(12) Notably, the functional LMOGs have many advantages when compared to the conventional gels such as electroactive polymer gels (in general, the gelators require cumbersome synthesis and obtained in less yields combined with the poor solubility in aqueous/organic media) and supramolecular hydrogels (in general, the gelators based on electroactive π-conjugated chromophores have poor aqueous solubility and the presence of ions/buffer hinders the conductivity measurements).
(59) The similar two-component charge transfer gels of I doped with TCNQ were also observed in ethyl acetate which was further confirmed by the clear change in color of the gel, UV–vis absorption spectroscopy, and AFM (Figure S3 in the Supporting Information).
(60) The CD data of TCNQ doped charge transfer gel of I in chloroform could not be obtained as the corresponding HT voltage data reached maximum values within the measured wavelength region.