The roles of sphingosine kinase 1 and 2 in regulating the metabolome and survival of prostate cancer cells

Tonelli, Francesca and Alossaimi, Manal and Natarajan, Viswanathan and Gorshkova, Irina and Berdyshev, Evgeny and Bittman, Robert and Watson, David G and Pyne, Susan and Pyne, Nigel J (2013) The roles of sphingosine kinase 1 and 2 in regulating the metabolome and survival of prostate cancer cells. Biomolecules, 3 (2). pp. 316-333. ISSN 2218-273X

[img] PDF (Pyne_2013_biomoleculesdocument)
Pyne_2013_biomoleculesdocument.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (351kB)

    Abstract

    We have previously shown that treatment of androgen-sensitive LNCaP cells with the sphingosine kinase (SK) inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of two N-terminal variants of SK1 (SK1a and SK1b), increases C22:0-ceramide and diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) and reduces S1P levels, and promotes apoptosis. We have now investigated the effects of three SK inhibitors (SKi, (S)-FTY720 vinylphosphonate, and (R)-FTY720 methyl ether) on metabolite and sphingolipid levels in androgen-sensitive LNCaP and androgen-independent LNCaP-AI prostate cancer cells. The 51 kDa N-terminal variant of SK1 (SK1b) evades the proteasome in LNCaP-AI cells, and these cells do not exhibit an increase in C22:0-ceramide or Ap3A levels and do not undergo apoptosis in response to SKi. In contrast, the SK inhibitor (S)-FTY720 vinylphosphonate induces degradation of SK1b in LNCaP-AI, but not in LNCaP cells. In LNCaP-AI cells, (S)-FTY720 vinylphosphonate induces a small increase in C16:0-ceramide levels and cleavage of polyADPribose polymerase (indicative of apoptosis). Surprisingly, the level of S1P is increased by 7.8- and 12.8-fold in LNCaP and LNCaP-AI cells, respectively, on treatment with (S)-FTY720 vinylphosphonate. Finally, treatment of androgen-sensitive LNCaP cells with the SK2-selective inhibitor (R)-FTY720 methyl ether increases lysophosphatidylinositol levels, suggesting that SK2 may regulate lyso-PI metabolism in prostate cancer cells.