Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Mapping hail meteorological observations for prediction of erosion in wind turbines

MacDonald, Hamish and Infield, David and Nash, David H. and Stack, Margaret M. (2016) Mapping hail meteorological observations for prediction of erosion in wind turbines. Wind Energy, 19 (4). pp. 777-784. ISSN 1095-4244

[img]
Preview
Text (Macdonald-etal-WE2015-mapping-hail-meteorological-observations-for-prediction-of-erosion-in-wind-turbines)
we1854.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB) | Preview

Abstract

Wind turbines are subject to a wide range of environmental conditions during a lifespan that can conceivably extend beyond 20 years. Hailstone impact is thought to be a key factor in the leading edge erosion and damage of wind turbine blades. Along with the size and density of the hailstone, the aggregated impact velocity components are crucial variables that characterise the kinetic energy associated with singular impact. These components include: the terminal velocity of the hailstone, the mean wind speed and the rotational speed of the turbine. Theorised values for the impact velocity may not truly reflect the conditions experienced by wind turbine blades. Using UK meteorological data, a greater representation of hail characteristics, occurrence probabilities and realistic impact component velocities is proposed, which will assist in the development of a realistic damage model for hailstone impact.