Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Availability growth and state-of-knowledge uncertainty simulation for offshore wind power plants

Zitrou, Athena and Bedford, Tim and Walls, Lesley and Wilson, Kevin and Bell, Keith (2014) Availability growth and state-of-knowledge uncertainty simulation for offshore wind power plants. In: Proceedings of the 12th Wind Integration Workshop. UNSPECIFIED, pp. 785-788. ISBN 9783981387070

Full text not available in this repository. Request a copy from the Strathclyde author


The use of new offshore wind turbine designs in uncertain environments introduces considerable systemic performance risks. Current availability models fail to represent these risks adequately even though they could lead to significant under-performance of windfarm availability. Serial early failures lead to loss of generation and costly mitigation activities. In this paper we present a model for offshore wind power plant availability growth that captures both systemic uncertainty and natural variability on availability assessments, and represents the effect of interventions in the failure and repair processes. Our model is a decision-support tool designed to inform management decisions to implement measures to reduce uncertainties and grow availability more effectively and efficiently. We demonstrate the use of the model, which is developed in MATLAB, by using an illustrative example of a fictitious offshore wind power plant.