Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN

Kusch, Gunnar and Li, Haoning and Edwards, Paul R. and Bruckbauer, Jochen and Sadler, Thomas C. and Parbrook, Peter J. and Martin, Robert W. (2014) Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN. Applied Physics Letters, 104 (9). ISSN 0003-6951

[img]
Preview
PDF (Kusch_APL2014)
Kusch_APL2014.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (888kB) | Preview

Abstract

The influence of substrate miscut on Al0.5Ga0.5 N layers was investigated using cathodoluminescence (CL) hyperspectral imaging and secondary electron imaging in an environmental scanning electron microscope. The samples were also characterized using atomic force microscopy and high resolution X-ray diffraction. It was found that small changes in substrate miscut have a strong influence on the morphology and luminescence properties of the AlGaN layers. Two different types are resolved. For low miscut angle, a crack-free morphology consisting of randomly sized domains is observed, between which there are notable shifts in the AlGaN near band edge emission energy. For high miscut angle, a morphology with step bunches and compositional inhomogeneities along the step bunches, evidenced by an additional CL peak along the step bunches, are observed.