Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Practical constraints on real time Bayesian filtering for NDE applications

Summan, R. and Pierce, S. and Dobie, G. and Hensman, J. and MacLeod, C. (2014) Practical constraints on real time Bayesian filtering for NDE applications. Mechanical Systems and Signal Processing, 42 (1-2). pp. 181-193. ISSN 0888-3270

[img]
Preview
Text (Summan-etal-MSSP2015-Practical-constraints-on-real-time-bayesian-filtering)
Summan_etal_MSSP2015_Practical_constraints_on_real_time_bayesian_filtering.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (5MB) | Preview

Abstract

An experimental evaluation of Bayesian positional filtering algorithms applied to mobile robots for Non-Destructive Evaluation is presented using multiple positional sensing data – a real time, on-robot implementation of an Extended Kalman and Particle filter was used to control a robot performing representative raster scanning of a sample. Both absolute and relative positioning were employed – the absolute being an indoor acoustic GPS system that required careful calibration. The performance of the tracking algorithms are compared in terms of computational cost and the accuracy of trajectory estimates. It is demonstrated that for real time NDE scanning, the Extended Kalman Filter is a more sensible choice given the high computational overhead for the Particle filter.