Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Coagulation and fragmentation with discrete mass loss

Blair, P.N. and Lamb, W. and Stewart, I.W. (2007) Coagulation and fragmentation with discrete mass loss. Journal of Mathematical Analysis and Applications, 329 (2). pp. 1285-1302. ISSN 0022-247X

Full text not available in this repository. Request a copy from the Strathclyde author


A nonlinear integro-differential equation that models a coagulation and multiple fragmentation process in which discrete fragmentation mass loss can occur is examined using the theory of strongly continuous semigroups of operators. Under the assumptions that the coagulation kernel Click to view the MathML source is bounded and the fragmentation rate function a satisfies a linear growth condition, global existence and uniqueness of solutions that lose mass in accordance with the model are established. In the case when no coagulation is present and the fragmentation process is governed by power-law kernels, an explicit formula is given for the substochastic semigroup associated with the resulting mass-loss fragmentation equation.