Coagulation and fragmentation with discrete mass loss

Blair, P.N. and Lamb, W. and Stewart, I.W. (2007) Coagulation and fragmentation with discrete mass loss. Journal of Mathematical Analysis and Applications, 329 (2). pp. 1285-1302. ISSN 0022-247X (http://dx.doi.org/10.1016/j.jmaa.2006.07.003)

Full text not available in this repository.Request a copy

Abstract

A nonlinear integro-differential equation that models a coagulation and multiple fragmentation process in which discrete fragmentation mass loss can occur is examined using the theory of strongly continuous semigroups of operators. Under the assumptions that the coagulation kernel Click to view the MathML source is bounded and the fragmentation rate function a satisfies a linear growth condition, global existence and uniqueness of solutions that lose mass in accordance with the model are established. In the case when no coagulation is present and the fragmentation process is governed by power-law kernels, an explicit formula is given for the substochastic semigroup associated with the resulting mass-loss fragmentation equation.

ORCID iDs

Blair, P.N., Lamb, W. ORCID logoORCID: https://orcid.org/0000-0001-8084-6054 and Stewart, I.W. ORCID logoORCID: https://orcid.org/0000-0002-4374-9842;