Model uncertainty in economic impacts of climate change : Bernoulli versus Lotka Volterra dynamics
Cooke, Roger M (2013) Model uncertainty in economic impacts of climate change : Bernoulli versus Lotka Volterra dynamics. Integrated Environmental Assessment and Management, 9 (1). pp. 2-6. (https://doi.org/10.1002/ieam.1316)
Full text not available in this repository.Request a copyAbstract
The dynamic economic behavior in most integrated assessment models linking economic growth to climate change involves a differential equation solved by Jacob Bernoulli in 1695. Using the dynamic integrated climate economy (DICE) model and freezing exogenous variables at initial values, this dynamic is shown to produce implausible projections on a 60-year time frame. If world capital started at US$1, after 60 years the world economy would be indistinguishable from one starting with 10 times the current capitalization. Such behavior points to uncertainty at the level of the fundamental dynamics, and suggests that discussions of discounting, utility, damage functions, and ethics should be conducted within a more general modeling vocabulary. Lotka Volterra dynamics is proposed as an alternative with greater prime facie plausibility. With near universality, economists assume that economic growth will go on forever. Lotka Volterra dynamics alert us to the possibility of collapse. Integr Environ Assess Manag 2013; 9: 2–6. © 2012 SETAC
-
-
Item type: Article ID code: 45214 Dates: DateEventJanuary 2013PublishedSubjects: Social Sciences > Industries. Land use. Labor > Risk Management Department: Strathclyde Business School > Management Science Depositing user: Pure Administrator Date deposited: 16 Oct 2013 10:57 Last modified: 11 Nov 2024 10:31 URI: https://strathprints.strath.ac.uk/id/eprint/45214