Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Confidence intervals for reliability growth models with small sample sizes

Quigley, J.L. and Walls, L.A. (2003) Confidence intervals for reliability growth models with small sample sizes. IEEE Transactions on Reliability, 52 (2). pp. 257-262. ISSN 0018-9529

[img]
Preview
PDF (CI for reliability growth models - March 2002)
CI_for_reliability_growth_models_March_2002.pdf - Preprint

Download (139kB) | Preview

Abstract

Fully Bayesian approaches to analysis can be overly ambitious where there exist realistic limitations on the ability of experts to provide prior distributions for all relevant parameters. This research was motivated by situations where expert judgement exists to support the development of prior distributions describing the number of faults potentially inherent within a design but could not support useful descriptions of the rate at which they would be detected during a reliability-growth test. This paper develops inference properties for a reliability-growth model. The approach assumes a prior distribution for the ultimate number of faults that would be exposed if testing were to continue ad infinitum, but estimates the parameters of the intensity function empirically. A fixed-point iteration procedure to obtain the maximum likelihood estimate is investigated for bias and conditions of existence. The main purpose of this model is to support inference in situations where failure data are few. A procedure for providing statistical confidence intervals is investigated and shown to be suitable for small sample sizes. An application of these techniques is illustrated by an example.