Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Modelling diet composition dynamics among North Sea predatory fish using a length-structured partial ecosystem model

McCaig, Chris and Speirs, Douglas and Heath, Michael (2012) Modelling diet composition dynamics among North Sea predatory fish using a length-structured partial ecosystem model. In: 6th World Fisheries Congress, 2012-05-07 - 2012-05-11.

[img]
Preview
PDF
Modelling_diet_composition_dynamics.pdf

Download (842kB) | Preview

Abstract

Multispecies fisheries management approaches must take account of the array of trophic interactions within the ecosystem. Studies of the gut contents of fish stocks in the North Sea show decadal changes in diet composition, as might be expected when the relative abundances of prey species change. In this paper we explore the extent to which a simple model of prey consumption deployed within a dynamic multi-species population model is able to capture those changes. We make use of a length-structured partial-ecosystem model (FishSUMS) in which the relative preferences of predators for prey are set by a combination of species weightings and predator-to-prey length ratios. The model allows for diets to evolve over the lifetime of the predator species as well as in response to changes in the available prey. Eleven commercially important North Sea species were included in the model with full length structure, together with other trophic resources represented in less detail. The model was simultaneously tuned to various sources of data, including time series of stock biomass and landings. We show that, despite the simplicity of the representation of the predation process, it is capable of capturing some of the large observed changes in diet in four predator species that were sampled during the Year of the Stomach projects in 1981 and 1991: cod, haddock, whiting and saithe. We also quantify how much of the biomass is lost to the fishery, to predation by explicitly-modelled species, and to unspecified mortality.