Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Seasonal patterns of growth and expenditure in juvenile Atlantic salmon

Jones, W. and Gurney, William and Speirs, Douglas and Bacon, P.J. and Youngson, A.F. (2002) Seasonal patterns of growth and expenditure in juvenile Atlantic salmon. Journal of Animal Ecology, 71. pp. 916-924. ISSN 0021-8790

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

1. We report a modelling study of a data-set describing the growth of individual Atlantic salmon (Salmo salarL.) parr in the Girnock Burn (Scotland). A development of the compensatory growth model due to Broekhusien et al. (1994) was fitted to these data by numerical optimization. 2.The model uses carbon mass as a surrogate for an energy currency. This mass is divided into structure and reserve components, so as to describe decoupled changes in length and wet-weight. 3. Using the same parameters for all fish, our model explained 83% of the variability in length and weight at age. Adding a single additional parameter for each individual enabled the model to explain over 96% of length and weight variability. 4. Weak negative correlation between size at first capture and within-study growth argues against genetic causality of observed growth variability. 5. The energetic basis of our model enables us to infer time-series of net assimilation and basal maintenance rates for the observed individuals. Maximal growth occurs early in the season when high assimilation is accompanied by low temperatures and maintenance rates. In late season, continuing high assimilation is balanced by high maintenance rates consequent on summer temperatures.