Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy

Anderson, Magnus and McGuire, Kenny and Zante, Remi Christophe and Ion, William and Rosochowski, Andrzej and Brooks, Jeffery (2013) Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy. Journal of Materials Processing Technology, 213 (1). 111–119. ISSN 0924-0136

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The dies used in the extrusion of nickel based super alloys are subject to severe mechanical and thermal stresses, resulting in shortened life and high manufacturing costs. It is necessary to understand the dominant damage mode in order to guide improvements for increased tool life. The operation under examination consists of the hot extrusion of a nickel based superalloy using nitrided hot work tool steel, glassed workpieces and graphite lubrication. The investigation was conducted through a combination of metallurgical analysis, metrology and finite element analysis. Out of the damage modes observed under these conditions, the plastic deformation of the substrate was found to be the cause for tool failure. This paper discusses the relationship between plastic deformation of the substrate and the formation of scoring marks, which fail the die.