Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Ultrasound imaging in lower limb prosthetics

Douglas, T. and Solomonidis, S.E. and Sandham, W.A. and Spence, W.D. (2002) Ultrasound imaging in lower limb prosthetics. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (1). pp. 11-21. ISSN 1534-4320

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The biomechanical interaction between the residual limb and the prosthetic socket determines the quality of fit of the socket in lower limb prosthetics. An understanding of this interaction and the development of quantitative measures to predict the quality of fit of the socket are important for optimal socket design. Finite-element modeling is used widely for biomechanical modeling of the limb/socket interaction and requires information on the internal and external geometry of the residual limb. Volumetric imaging methods such as X-ray computed tomography, magnetic resonance imaging, and ultrasound have been used to obtain residual limb shape information. Of these modalities, ultrasound has been introduced most recently and its development for visualization in prosthetics is the least mature. This paper reviews ultrasound image acquisition and processing methods as they have been applied in lower limb prosthetics.