Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific

Stepek, G and Auchie, M and Tate, R and Watson, K and Russell, D G and Devaney, E and Harnett, W (2002) Expression of the filarial nematode phosphorylcholine-containing glycoprotein, ES62, is stage specific. Parasitology, 125 (Pt 2). pp. 155-64. ISSN 0031-1820

Full text not available in this repository. Request a copy from the Strathclyde author


ES62, an immunomodulatory phosphorylcholine-containing glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae, has previously been shown to be produced by L4 larvae and adult worms only. However, homologous sequences to ES62 have recently been found in L1 and L3 cDNA libraries of certain human filarial nematodes. Therefore, the various stages of A. viteae were re-examined and it was again found that only the post-L3 stages secreted ES62. Synthesis but not secretion by earlier stages was ruled out by examination of the protein content of whole worm extracts and by immunoelectron microscopy. However, examination by PCR of the mRNA for ES62 revealed that it was found in the L1 and L3 larvae. This may explain why homologous sequences to ES62 have been found in Brugia malayi and Onchocerca volvulus larval cDNA libraries. It also suggests that filarial nematodes, in general, may secrete ES62. To obtain evidence for this, we investigated production by Brugia pahangi, a close relation of B. malayi. We found that ES62 was indeed secreted but, as with A. viteae, only by the post-L3 stages, although again the mRNA for ES62 could be detected in the earlier stages. Overall our results suggest that production of ES62 is not species specific, that it is indeed stage specific, and that this may be due to post-transcriptional control of expression.