Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A fractally fractionated spacecraft

Punzo, Giuliano and Bennet, Derek James and Macdonald, Malcolm (2011) A fractally fractionated spacecraft. In: 62nd International Astronautical Congress 2011, 2011-10-03 - 2011-10-07.

[img] PDF
Macdonald_M_Pure_A_fractally_fractionated_spacecraft_Oct_2011.pdf
Preprint

Download (609kB)

    Abstract

    The advantages of decentralised multi-spacecraft architectures for many space applications are well understood. Distributed antennas represent popularly envisaged applications of such an architecture; these are composed of, typically, receiving elements carried on-board multiple spacecraft in precise formation. In this paper decentralised control, based on artificial potential functions, together with a fractal-like connection network, is used to produce autonomous and verifiable deployment and formation control of a swarm of spacecraft into a fractal-like pattern. The effect of using fractal-like routing of control data within the spacecraft generates complex formation shape patterns, while simultaneously reducing the amount of control information required to form such complex formation shapes. Furthermore, the techniques used ensures against swarm fragmentation, which can otherwise be a consequence of the non-uniform connectivity of the communication graph. In particular, the superposition of potential functions operating at multiple levels (single agents, subgroups of agents, groups of agents) according to a self-similar adjacency matrix produces a fractal-like final deployment with the same stability property on each scale. Results from the investigations carried out indicate the approach is feasible, whilst outlining its robustness characteristics, and versatility in formation deployment and control. Considering future high-precision formation flying and control capabilities, this paper considers, for the first time and as an example of a fractally fractionated spacecraft, a decentralised multi-spacecraft fractal shaped antenna. Furthermore, multi-spacecraft architecture exploiting fractal-like formations can be considered to investigate multi-scale phenomena in areas such as cosmic radiation and space plasma physics. Both numerical simulations and analytic treatment are presented, demonstrating the feasibility of deploying and controlling a fractionated fractal antenna in space through autonomous decentralised means. This work frames the problem of architecture and tackles the one of control, whilst not neglecting actuation.