Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

A fast, effective local search for scheduling independent jobs in heterogeneous computing environments

Ritchie, G. and Levine, J. (2003) A fast, effective local search for scheduling independent jobs in heterogeneous computing environments. In: Proceedings of the 22nd Workshop of the UK Planning and Scheduling Special Interest Group. UNSPECIFIED.

[img]
Preview
PDF
10.1.1.123.651_1_.pdf
Accepted Author Manuscript

Download (69kB) | Preview

Abstract

The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. Work with other NP-hard problems has shown that solutions found by heuristic algorithms can often be improved by applying local search procedures to the solution found. This paper describes a simple but effective local search procedure for scheduling independent jobs in HC environments which, when combined with fast construction heuristics, can find shorter schedules on benchmark problems than other solution techniques found in the literature, and in significantly less time.